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Abstract-The paper presents the creep-stability analysis of viscoelastic cylindrical 
shells under axial compression. The mechanical properties of the material are described 
by the constitutive equations of the linear viscoelastic theory in terms of convolution 
integral operators. The approximate analytical solution to the problem is obtained by 
means of a modification of the quasi-elastic method. As a result, the instability condition 
for the shell is formulated. It is shown that for viscoelastic materials with limited creep, 
there is a safe load limit below which the structure is asymptotically stable. Any load 
above the safe load limit leads to buckling at the corresponding critical time. 

1. INTRODUCTION 

Creep stability of circular cylindrical shells has been studied by numerous researchers 
using various concepts and constitutive laws. A number of investigations utilize the initial 
imperfection approach followed by the conclusion that under creep conditions initial im- 
perfections develop with time, leading eventually to collapse of the structure. The critical 
time in such analyses is usually defined in terms of infinite deformations or infinite de- 
formation rates. Comprehensive reviews of these studies are given by Hoffll, 21 and 
Kurshin[3]. 

In recent years an increasing interest has been attracted by applications of the classical 
bifurcation theory to the creep-stability research. In particular, creep stability of cylin- 
drical shells is treated in many publications[4-81 as an instantaneous process which in- 
volves time-dependent constitutive terms and is characterized as branching into a different 
equilibrium configuration. Respectively, the critical time is associated with the instant at 
which bifurcation first becomes possible. The results from these studies depend upon the 
basic assumptions as to the creep properties of the structure. 

The present paper is concerned with the stability analysis of circular cylindrical shells 
whose material properties are defined by the constitutive equations of the linear viscoe- 
lastic theory. Using the concept of bifurcation the exact linear eigenvalue problem is 
formulated in terms of two destabilizing parameters: the compressive load and time. The 
problem is treated by means of the quasi-elastic solution technique which utilizes the 
concept of a time-dependent elastic material as a model of the actual viscoelastic response. 
This approach to the creep-stability analysis of viscoelastic structures is discussed by the 
author in [9]. 

529 

Downloaded from http://www.elearnica.ir



530 A. M. VINOGRADOV 

2. STATEMENT OF THE PROBLEM 

Consider a circular cylindrical shell (Fig. 1) of length 1, radius r and thickness h, whose 
material properties can be described by the linear theory of hereditary viscoelasticity. 
The shell is simply supported at both ends and is subjected to a uniform axial compression 
of magnitude, p, which is less than the elastic critical pressure pp. It is assumed that the 
load is suddenly applied at the time, t = 0, but this does not imply rates sufficiently great 
to cause the excitation of a dynamic response of the structure. 

The quasi-static state of the shell is governed by a set of simultaneous equations com- 
prising the equations of equilibrium, kinematic relations and the viscoelastic constitutive 
law. Of all these conditions, it is only the viscoelastic constitutive equations which differ 
from those of the corresponding elastic problem. Other equations follow directly from the 
theory of elastic stability. 

In this study, the neutral equilibrium of the shell is described by the Donnell equa- 
tions[lO], and the constitutive equations of the linear viscoelastic theory are expressed 
in terms of hereditary integral operators, E* and u*, involving experimentally measurable 
creep or relaxation functions[ 111. 

The operator E* can be delined by the uniaxial stress-strain relation presented in either 
of two equivalent forms: 

u(t) = E*{e(t)} = E(1 - R”) {e(t)} (1) 

or 

E(t) = & {u(t)} = ; (1 + r*) b(t)], 

Fig. I. Bufurcation of a viscoelastic cylindrical shell under axial compression 

(2) 
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where E denotes the instantaneous elastic modulus of the material, and the notations R* 
and I* are used to signify two integral operators of the Stjelties convolution type 

R*{e(t)} = so’R(t - T) E(T) d7 (3) 

and 

r*{U( t,} = I’ r(t - T) U(T) dT. (4) 

The kernel functions, R(t - T) and I(t - T), characterize, respectively, the relaxation 
and the creep properties of the viscoelastic material. It follows from Eqs. (1) and (2) that 
the operator E* can be expressed either in the form 

E* = E(l - R*) (3 

or 

E* = E/(1 + I*). (6) 

The operator u* is, in general, of the same form as E* but involves a different kernel 
function. In this study, however, it is assumed, for simplicity, that 

v* v, 

where 1, denotes the instantaneous Poisson’s ratio. Equation (7) implies that in a uniaxial 
extension test under stress-relaxation conditions, the time-dependent portion of the lateral 
strain can be neglected. This assumption is found to be sufficiently accurate for most 
actual viscoelastic materials. 

In terms of the middle-surface shell forces, N,, NY and NXY, the viscoelastic constitutive 
equations are defined in the form 

where the strain components, exx, E,, and yXY, are functions of the coordinates, x and y, 
and the time, t. 

These equations, solved simultaneously with the kinematic relations and the equations 
of equilibrium of the cylindrical shell, reduce the viscoelastic stability problem to a single 
linear homogeneous integro-differential equation 

+ ph V4 $ = 0, (9) 

in which V4 and V* indicate two and four successive applications of the Laplace operator; 
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w = w(x, y, t) denotes the lateral displacement of the shell, and D* is defined as 

D* = h3 E* 

12(1 - u2) . 

Note that Eq. (9) is of the same form as the governing equation of the associated elastic 
stability problem in which the elastic modulus, E, is replaced by the integral operator, 
E*. 

For a simply supported cylindrical shell 

d2W 
w=y--$=o. at x = 0, 1. (11) 

These boundary conditions are stationary in time. 
The initial condition to the problem is associated with the assumption that the response 

of the structure at the time of the load application is instantaneously elastic. One notes 
that this condition is satisfied automatically since at t = 0 the viscoelastic constitutive 
equations coincide with the corresponding equations for an elastic material with the in- 
stantaneous Young’s modulus, E. 

3. METHOD OF SOLUTION 

In this paper the problem under consideration is treated by means of the quasi-elastic 
method suggested by Schapery[ 121 for the linear viscoelastic stress analysis. The method 
is based upon the fact that the behaviour of many engineering materials with fading mem- 
ory can be approximately replaced by the response of a fictitious elastic material the 
mechanical properties of which depend parametrically on time. Similarly to the Laplace 
transform technique, the quasi-elastic method utilizes the associated elastic solution but 
does not involve complications of the inverse transformation procedure. 

Application of the quasi-elastic method to the uniaxial stress-strain relation given by 
Eq. (1) results in the approximation 

u(t) = E(t).e(t), (12) 

where 

E(t) = E*(l) = E[l - R*(l)]. (13) 

One can observe that Eq. (12) is derived from Eq. (1) by replacing the action of the integral 
operator E*{e( t)} by the product E( t)*e( t). Equation (12) is identical in form with the elastic 
stress-strain relation in which E(t) represents a time-dependent Young’s modulus. Note 
that, according to Eq. (13), the function E(t) is associated with the relaxation properties 
of the actual viscoelastic material. 

An alternative expression for the function E(t) can be derived from Eq. (2) in the form 

E(t) = -W + $(t)l, (14) 

where + denotes the creep function of the material 

$(t) = r*(l) = ’ l-(t - T) dT. (15) 
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It is shown in [12] that the quasi-elastic solution technique is equally applicable to two- 
and three-dimensional viscoelastic equations, and that the method provides sufficiently 
accurate results when the characteristic parameters involved in the problem are slowly 
varying functions of time. Accuracy of the quasi-elastic method in application to the creep- 
stability analysis of viscoelastic structures is discussed in [9]. 

The quasi-elastic approximation of the stress-strain relations given by Eqs. (8) is of 
the form 

(16) 

where E(t) is defined by either Eq. (13) or (14). 
Equations (16), solved simultaneously with the equations of equilibrium of the shell 

and the kinematic relations, result in the differential equation 

D(t) V4w0 + f E(t) 2 
#WI) 

+ ph V4 - = 
dX2 

0 (17) 

in which time t is a parameter, w. denotes the quasi-elastic approximation of the lateral 
deflection w, w. = w, and D(t) is defined as 

D(t) = 
h3E(t) 

12(1 - v2) 
(18) 

Equation (17) can be treated as the governing equation of the elastic-stability problem 
in which a fictitious cylindrical shell, geometrically similar to the original viscoelastic 
shell, is acted upon by the same axial compressive load and has elastic properties char- 
acterized by a time-dependent elastic modulus, E(t). Note that the function E(t) depends 
upon the properties of the actual viscoelastic material and can be derived either from Eq. 
(13) or (14), pro<ided that the creep or relaxation characteristics of this material are 
specified. 

Equation (17) depends parametrically on time. By assigning a certain value of t, one 
arrives at the governing equation of the corresponding elastic-stability problem in which 
the critical load, per, can be derived using the regular solution procedure of the theory 
of elastic stability. Different values of the parameter t generate, respectively, a sequence 
of corresponding magnitudes of the critical load so that a continuous function of time, 
pc,(t), can be derived in the form 

Per(t) 1 - = 
Pe 1 + e(t) ’ 

where pe denotes the elastic critical load detined by 

(19) 
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4. DISCUSSION 

Equation (19) represents the condition of instability of a viscoelastic cylindrical shell 
under axial compression. This condition involves two destabilizing parameters: the applied 
load p, and tl% time t. It is of particular interest that the ratio p,,/p, depends only upon 
the creep properties of the viscoelastic material. 

Further in the analysis, two types of linear viscoelastic materials will be distinguished: 
those exhibiting limited and unlimited creep. The first type comprises the materials defined 
in 1131 as viscoelastic solids and is characterized by a creep function, Jl(t), which tends 
to a limiting constant value, *_, as r + m. The second type includes so-called linear 
viscoelastic fluids with the creep function unlimited in time, $_ = x. 

It follows from Eq. (19) that for linear viscoelastic solids there is a particular magnitude 
of the compressive load, P,, below which the cylindrical shell remains asymptotically 
stable. This load can be defined as the safe load limit, P,, which is given by 

PS 1 -=- 
P, 1 +. l/h * 

(21) 

Clearly, for linear viscoelastic fluids, P, = 0. 

Any compressive load above P, leads eventually to bifurcation of equilibrium which 
occurs at the critical time, fcr. For a compressive load within the limits P, % P 5 P, the 
corresponding value of &.,. can be derived using Eq. (19), provided that the creep function 
of the material, 9(t), is specified. 

The diagram shown in Fig. 2 presents a geometrical interpretation of the typical critical 
load-time relation defined by Eq. (19). One can observe that, for the two limiting cases, 
P = P, and P = P,, the corresponding values of t,, are defined, respectively, as t,, * CC 
and t,, = 0. The latter result indicates that at a compressive load of the same magnitude 
as the classical elastic critical load, bifurcation of equilibrium occurs at the time of the 
load application. 

As an illustration of the above results, two simple models are considered representing 
viscoelastic materials with limited and unlimited creep. The first model shown in Fig. 3(a) 
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Fig. 2. Typical critical load-time relation for viscoelastic cylindrical shells. 
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is known as the three-parameter standard solid. It is characterized by the creep function 

*(t) = f (1 - eC@), /JJ = EJq, 
1 

(22) 

which is limited by \Irm = E/E,. The Maxwell-Kelvin model shown in Fig. 3(b) represents 
a viscoelastic material with the creep function unlimited in time: 

*(t> = E (1 - e-F”‘) + Et. 
1 

(23) 

Under the assumption that E/E, = 0.5 and qrl-q = 0.1, one arrives at @ = 0.5 and pSl 

Pe = 0.67 in the case of the three-parameter standard solid. For the Maxwell-Kelvin 
material, & = ~0 and, respectively, pS = 0. The load-critical time relations for both 
viscoelastic material models are presented in Fig. 4. 

J 

Fig. 3. Simple viscoelastic material models: (a) three-parameter standard solid; (b) Maxwell-Kelvin material. 
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Fig. 4. The critical load-time relation: (a) three-parameter standard solid; (b) Maxwell-Kelvin material. 
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5. CONCLUDING REMARKS 

The creep-stability problem for linearly viscoelastic cylindrical shells is formulated as 
an eigenvalue problem of a linear homogeneous integro-differential equation subject to 
certain boundary and initial conditions. The governing equation is solved approximately 
using the quasi-elastic solution technique. The method implies that the behaviour of a 
linearly viscoelastic material can be represented by an equivalent time-dependent elastic 
material model. Following from this approach, the instability condition for viscoelastic 
cylindrical shells under axial compression is obtained in a concise analytical form. It is 
shown that for viscoelastic materials with limited creep there is a particular value of the 
compressive load, referred to as the safe load limit, below which the initial equilibrium 
of the shell is asymptotically stable. For any load above the safe load limit, the corre- 
sponding critical time can be derived from the instability condition, provided that the 
creep function of the material is specified. 

One notes that the critical load-time relation given in the form of Eq. (19) coincides 
qualitatively with the results derived in [8] and [14] by means of different solution 
procedures. 

It is of interest that using the Laplace-transformation technique in the creep-stability 
analysis of viscoelastic columns with limited creep, Distefano[lS] arrived at a so-called 
“viscoelastic critical load” which is of the same magnitude as the safe load limit, ps, 
given by Eq. (21). Identical equations for ps have been derived in [9] and [16] for linear 
viscoelastic spherical shells and circular arches. It appears from the latter observation 
that, in general, for viscoelastic thin-walled structures the relation of the safe load limit 
to the corresponding elastic critical load depends only upon the long-term creep properties 
of the linear viscoelastic material. This conclusion, however, requires further 
investigations. 
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